Alkoxalyl Complexes of Pd(I1) and Pt(I1)

-
- (35) W. J. Geary, *Coord. Chem. Rev.,* **7,** 81 (1971). (36) R. J. Angelici, "Synthesis and Techniques in Inorganic Chemistry," W. B. Saunders Co., Philadelphia, Pa., 1969, pp 99-104.
- (37) W. Beck, W. P. Fehlhammer, D. Pollman, E. Schuieuer, and K. Feldl, *Chem. Eer.,* **100,** 3335 (1967).
-
- (38) K. Bowman and Z. Dori, *Inorg. Chem.,* **9,** 395 (1970). (39) These statements could also be extended to octahedral complexes but there are known exceptions, *viz.,* complexes of Cr(O), Mo(O), W(O), and Mn(1); see *e.g.,* J. F. Nixon and A. Pidcock, *Annu. Rev. NMR (Nucl.* Magn. Resonance) Spectrosc., 2, 345 (1969); F. B. Oglivie, J. M. Jenkins, and J. G. Verkade, *J. Amer. Chem. Soc.*, 92, 1916 (1970); P. K. Maples and C. S. Kraihanzel, *ibid.*, 90, 6645 (1968).
- (40) R. J. Goodfellow, M. J. Hardy, and B. F. Taylor, *J. Chem. Soc., Dalton Trans.,* 2450 (1973).
- *Inorganic Chemistry, Vol. 14, No. 1, 1975 59*
- R. K. Harris, *Can. J. Chem.,* **42,** 2275 (1964). A Auk, *J. Chem. Educ.,* **47,** 812 (1970).
-
- D. A. Redfield, J. H. Nelson, and L. W. Cary, *Inorg. Nucl. Chem. Lett.,* **10,** 727 (1974).
- P. Diehl, R. K. Harris, and R. G. Jones, *Progr. Nucl. Magn. Resonance*
- Spectrosc., 3, 37 (1967).
J. P. Fackler, Jr., J. A. Fetchin, J. Mayhew, W. C. Seidel, T. J. Swift,
and M. Weeks, *J. Amer. Chem. Soc.*, 91, 1941 (1969); C. G. Grimes
and R. G. Pearson, *Inorg. Chem.*, 13, 970 (1974).
- (46)
- W. J. Louw, *J. Chem. Soc., Chem. Commun.*, 353 (1974).
C. H. Langford and H. B. Gray, "Ligand Substitution Processes,"
Benjamin, New York, N. Y., 1965, pp 18–51. (47)
- F. Basolo and R. G. Pearson, "Mechanisms of Inorganic Reactions," 2nd ed, Wiley, New York, N. Y., 1968, pp 351-435.

Contribution from Ames Laboratory-USAEC and the Department of Chemistry, Iowa State University, Ames, Iowa 50010

Alkoxalyl Complexes of Palladium(I1) and Platinum(I1)

EDWARD D. DOBRZYNSKl and ROBERT J. ANGELICI*

Received *August 25, 1974* AIC40620N

Alkoxalyl complexes of the general formula trans-MCl(COCO₂R)L₂, where M = Pt or Pd, R = CH₃ or C₂H₅, and L = P(C₆H₅)₃, P(CH₃)(C₆H₅)₂ or P(C₂H₅)₃, were prepared by oxidative-addition reactions $C=O$ groups of the planar alkoxalyl ligand have an s-trans conformation in the solid state, but in solution PtCl(COCO₂CH₃)L₂ exists as two conformers as indicated by infrared studies. With Cl₂, PtCl(COCO₂CH₃)[P(C₆H₅)₃]₂ rapidly yields CICOCO2CH3 and PtCl2[P(C6H5)3]2. With C2H5OH and a trace of C2H5O-, PtCl(COCO2CH3)[P(C6H5)3]2 is transesterified to give PtCl(COCO₂C₂H₅)[P(C₆H₅)₃]₂. While the platinum-alkoxalyl complexes are stable in solution, the palladium analogs readily undergo decarbonylation in solution to give the corresponding alkoxycarbonyl complexes (PdCl(C02R)Lz). This decarbonylation is greatly inhibited by adding phosphines (L) to the solutions. Attempts to prepare alkoxalyl complexes by CO insertion into alkoxycarbonyl complexes are also briefly described.

Palladium(I1) chloride promotes the reaction of ethanol with CO and base to give diethyl carbonate¹

 $2EtOH + CO + PdCl_1 + 2Na_2CO_3 \rightarrow (EtO)_2CO + Pd +$ $2\text{NaCl} + 2\text{NaHCO}_3$ (1)

The reaction has been postulated to proceed through an ethoxycarbonyl intermediate

$$
\text{PdC}^{\text{LO}}_{\text{OEt}}
$$

which is subsequently converted to the carbonate by ethoxide attack at the carbonyl carbon atom. The preparation and isolation2-4 of related alkoxycarbonyl complexes, PdC1- $(CO_2R)L_2$, stabilized by phosphine (L) ligands support this idea.

Under more vigorous conditions, PdCl₂ together with a cocatalyst such as CuC12 or FeC13 and a dehydrating agent catalyzes the reaction of ethyl alcohol, CO , and $O₂$ to give diethyl oxalate and smaller amounts of $(E_tO)₂CO₅$

$$
2EtOH + 2CO + \frac{1}{2}O_2 \rightarrow EtO_2C-CO_2Et + H_2O
$$
 (2)

This reaction is also postulated to involve the formation of an ethoxycarbonyl complex (PdCOzEt), which is then converted to the oxalate ester. At the high CQ pressures, this latter step could proceed *via* CO insertion into the Pd-C bond to give an ethoxalyl complex

$$
\begin{array}{c}\n\text{OO} \\
\text{PdCO}_2\text{Et} + \text{CO} \rightleftarrows \text{PdCCOE} \\
\text{(3)}\n\end{array}
$$

which would undergo OEt⁻ attack giving the product. The purpose of our investigation was to determine whether or not stable Pd(I1) and Pt(1I) complexes bearing the novel alkoxalyl ligand could be synthesized according to eq 3 as well as by other routes and, if so. to examine some of their reactions.

Experimental Section

Materials. The compounds PtL₄ $(L = P(C_6H_5))$ or P(CH₃)- $(C_6H_5)_2$) were prepared as described in the literature.⁶ The analogous PdL4 complexes were prepared by adding L to a pentane solution of $(\pi$ -C₅H₅)Pd(π -C₃H₅).⁷ Solutions of Pd[P(C₂H₅)₃]₄ were prepared by slowly adding $P(C_2H_5)$ ₃ to a pentane solution of $(\pi$ -C₅H₅)Pd- $(\pi$ -C₃H₅) until the color turned from red to yellow. This solution was used directly for subsequent oxidative-addition reactions. The $(\pi$ -C₅H₅)Pd(π -C₃H₅) was prepared either by the literature method⁸ or by a more convenient modification using TlCsHs instead of NaC₅H₅. This was done by stirring a solution of 1.94 g (5.3 mmol) of $[(\pi$ -C₃H₅)PdCl]₂ and 2.87 g (10.7 mmol) of TlC₅H₅ in 25 ml of tetrahydrofuran (THF) under a nitrogen atmosphere at 25° for 5 min. After evaporating the solvent under vacuum, the residue was extracted with 50 ml of pentane. After filtering, the pentane was removed under vacuum leaving 1.89 g (85%) of the red crystalline product.

Alkoxycarbonyl Complexes by Oxidative-Addition Reactions. a. PdCl(CO₂CH₃)[P(C₆H₅)₃]₂. To a solution of 0.67 g (0.58 mmol) of $Pd[P(C₆H₅)₃]$ ₄ in 20 ml of benzene under N₂ was added 0.054 g (0.58) mmol) of CICO₂CH₃. After stirring for 5 hr at 25^o, the solvent was removed under vacuum and the remaining residue was washed with diethyl ether. Recrystallization from CHzClz-hexane gave the pale yellow crystalline product (0.34 g, 80% yield).

Anal. Calcd for **PdCl(C02CH3)[P(C6H5)3]2:** C, 63.0; H, 4.56; Cl, 4.84. Found: C, 63.4; H, 4.83; CI, 5.01.

b. PtCI(CO₂CH₃)[P(C₆H₅)₃]₂. Methyl chloroformate (ClCO₂-CH3) was added to a refluxing solution of 1.16 g (0.94 mmol) of Pt[P(C6Hs)3]4 in 50 ml of benzene under an N2 atmosphere until the yellow solution became pale yellow. Removal of benzene under vacuum yielded a white solid which was washed with ether and recrystallized from CHzClz-hexane to give 0.57 g (75%) of the product. Its ir and proton nmr spectra (Table I) were virtually identical with those reported for this compound prepared by a different method.⁹ The analogous Pt(Cl)(CO₂C₂H₅)[P(C₆H₅)3]₂ was prepared by refluxing a 20-ml toluene solution of 0.91 g (8.4 mmol) of $CICO_2C_2H_5$ and 0.46 g (0.47 mmol) of Pt[P(C6H5)3]3¹⁰ for 12 hr. Isolation as described above gave 0.21 g (54%) of the white product.9

Alkoxycarbonyl Complexes by Carbonylation of MCIzL2 Complexes. a. PdCl(CO₂CH₃)[P(C₆H₅)₃]₂. A suspension of 0.74 g (1.0 mmol) of trans-PdCl₂[P(C₆H₅)₃]₂ and 0.057 g (1.0 mmol) of NaOCH₃ in 50 ml of CH₃OH was stirred under CO (1 atm) for 5 hr at 25°. The resulting pale pink solid was collected by filtration and washed with H₂O, C₂H₅OH, and finally ether to give 0.67 g (88%) of PdCl(C- O_2CH_3 [P(C_6H_5)₃]₂, whose spectra (Table I) were identical with those of this complex prepared by the oxidative-addition route. The platinum analog was prepared similarly from $cis-PtCl₂[P(C₆H₅)₃]$ ₂.

Table I. Infrared and Proton Nmr Data

^{*a*} In CHCl₃ solution. ^{*b*} In CDCl₃ solution with tetramethylsilane $(\tau 10.0)$ as an internal standard. Abbreviations: s, singlet; t, triplet; q, quartet; m, multiplet. c See ref 9. d $J(PtCOCH) = 7$ Hz. e For $P\text{-CH}_3$ protons, τ 7.85 (t) with satellites and $J(PCH) = 4$ Hz and $J(\text{PtPCH}) = 33 \text{ Hz}$. *f* See ref 2. *#* For *P*-CH₃ protons, τ 7.93 (t) with $J(\text{PCH}) = 3.5 \text{ Hz}$. *h* 1725 (s, sh), 1710 (s), 1665 (m, sh), 1652 (s) cm^{-1} in CH, Cl,.

b. PdCl(CO₂CH₃)[P(C₂H₅)₃]₂. A suspension of 0.39 g (0.95 mmol) of trans-PdCl₂[P(C₂H₅)₃]₂ and 0.20 g (1.90 mmol) of Na₂CO₃ in 25 ml of CH3OH was stirred under CO (1 atm) for 15 min. After vacuum removal of the CH₃OH, the orange-brown residue was extracted with 40 ml of pentane. After treatment with activated charcoal and filtration, the pale yellow solution was concentrated under vacuum to about 15 ml. Cooling to -20° gave white needles of the product (0.13 g, 32%), which was identified by its spectra (Table I).

Preparation of Alkoxalyl Complexes. a. PtCl(COCO2R)L₂ (R = CH₃, C₂H₅; L = P(C₆H₅)₃, P(CH₃)(C₆H₅)₂). These complexes were all prepared similarly. As an example, 0.23 g (1.92 mmol) of methyl oxalyl chloride (CICOCO₂CH₃) was added to a solution of 2.39 g (1.93 mmol) of $Pt[P(C_6H_5)_3]_4$ in 50 ml of benzene under an N_2 atmosphere. Stirring for 5 min at 25° gave a pale yellow solution. Benzene was removed under vacuum leaving a yellow solid. The solid was triturated with ether and recrystallized from CH₂Cl₂-hexane to give yellow crystals of PtCl(COCO₂CH₃)[P(C₆H₅)₃]₂ (1.30 g, 81%; mp $215-220^{\circ}$ with loss of CO)

Anal. Calcd for PtCl(COCO₂CH₃)[P(C₆H₅)₃]₂; C, 55.6; H, 3.95. Found: C, 55.7; H, 4.04.

The alkoxalyl complexes in the platinum series are all bright yellow crystalline solids which are stable both in solution and in the solid state at room temperature and are not decomposed by air or water.

b. PdCl(COCO₂R)L₂ (R = CH₃, C₂H₅, L = P(C₆H₅)₃, P- $(CH₃)(C₆H₅)₂$). Like their platinum analogs, the palladium alkoxalyl complexes were also prepared by the oxidative-addition method. As a typical example, 0.313 g (2.30 mmol) of ClCOCO₂C₂H₅ was added to a solution of 2.66 g (2.30 mmol) of $Pd[P(C6H5)3]4$ in 40 ml of toluene at 0° . After stirring the solution for 15 min at 0° , 80 ml of ether was added to precipitate the yellow solid product. After filtration, the solid was washed several times with ether and then dried under vacuum to give PdCl(COCO₂C₂H₅)[P(C₆H₅)3]₂ (1.47 g, 84%) as a bright yellow powder.

Anal. Calcd for PdCl(COCO₂C₂H₅)[P(C₆H₅)3]₂: C, 62.5; H, 4.61; Cl, 4.62. Found: C, 62.0; H, 4.54; Cl, 4.54.

The PdCl(COCO₂CH₃)[P(C₂H₅)₃]₂ complex was prepared by allowing equimolar (1.97 mmol) $Pd[P(C_2H_5)]_4$ and $C[COCO_2CH_3]$ to react in 10 ml of pentane at 25°. After filtering, the solution was concentrated under vacuum and cooled to -20° giving yellow crystals $(\sim 15\%)$ of the product.

The complexes in this series are all bright yellow solids which are stable in the solid state and do not react with air or water. Unlike their platinum analogs, however, they do undergo noticeable decomposition when stored at room temperature for several months. In CH₂Cl₂, CHCl₃, or benzene solution, they are not stable and readily lose CO to give the corresponding alkoxycarbonyl complexes. Addition of $P(C_6H_5)$ to these solutions greatly retards this decarbonylation thus allowing the complexes to be recrystallized from CH2Cl2-hexane.

Transesterification of PtCl(COCO₂CH₃)[P(C₆H₅)₃]₂. To a solution of 0.22 g (0.26 mmol) of PtCl(COCO₂CH₃)[P(C₆H₅)₃]₂ in 15 ml

of dry THF was added 5 ml of C2H₅OH containing a trace of NaOC2H5. After stirring for 2 hr at 25°, an additional 10 ml of C₂H₅OH was added causing the precipitation of a light vellow solid (0.20 g), which was washed with C₂H₅OH and dried under a stream of N₂. A proton nmr spectrum of the precipitate in CDCl₃ indicated by comparison with spectra of authentic samples (Table I) that 88% of it was PtCl(COCO₂C₂H₅)[P(C₆H₅)₃]₂ while the remaining 12% was unreacted starting material.

Reaction of PtCl(COCO₂CH₃) $[P(C_6H_5)_3]_2$ with Cl₂. An excess of Cl₂ was condensed onto a solution of 0.12 g (0.14 mmol) of PtCl(COCO₂CH₃)[P(C₆H₅)₃]₂ in CDCl₃ at -196^o under vacuum. On warming to room temperature, a yellow solid precipitated and was separated by filtration. The proton nmr spectrum of the CDCl3 solution showed only the characteristic singlet (τ 6.01) of ClCO- $CO₂CH₃$; the infrared spectrum of this solution indicated the presence of CICOCO₂CH₃ by the ν (C=O) band at 1760 cm⁻¹. The yellow solid was identified as trans-PtCl2[P(C6H5)3]2 (0.11 g, 96%) by its strong ν (Pt-Cl) band at 343 cm⁻¹.¹¹

When the reaction was carried out with equimolar amounts (0.23) mmol) of complex and Cl2 under the same conditions as above, CICOCO₂CH₃ was again observed but the tan solid precipitate was identified as cis -PtCl₂[P(C₆H₅)₃]₂ by characteristic ν (Pt-Cl) bands at 295 and 320 cm⁻¹.¹¹

Results and Discussion

Syntheses and Structures. Prior to examining the forward and reverse reactions expressed in eq 3, we prepared several alkoxycarbonyl complexes via either one of two methods. The first was by oxidative-addition of alkyl chloroformates to Pd(0) and $Pt(0)$ complexes

$$
ML_{+} + CL-CO_{2}R \rightarrow MCl(CO_{2}R)L_{2} + 2L
$$
\n(4)

where $M = Pd$ or Pt , $R = CH_3$ or C₂H₅, and $L = a$ phosphine. This route had previously² been used to generate PdCl(C- $O_2C_2H_5$)[P(C₆H₅)₃]₂ at room temperature, but we find that refluxing benzene or toluene solutions are required to accomplish the same reactions of Pt, thus demonstrating the greater reactivity of $Pd(0)$ as compared to $Pt(0)$.

The second method involved alkoxycarbonylation with CO and an alcohol in the presence of a base (B)

$$
MCl_2L_2 + CO + ROH + B \rightarrow MCl(CO_2R)L_2 + BH^*Cl^-(5)
$$

where $M = Pd$ or Pt, $L = a$ phosphine, and $B = OR^{-}$ or Na₂CO₃. The syntheses of several other related complexes from MX₂L₂ derivatives have been accomplished by this method; these include $Pd(NCO)(CO₂R)L₂$ ³ $PdCl(CO₂R)L₂$ ⁴ $Pt(NCO)(CO₂R)L₂,^{3,12}$ and $Pt(O₂CCF₃)(CO₂R)L₂,¹³$ All of these reactions presumably proceed by alcohol or alkoxide attack on a cationic carbonyl intermediate⁹ MX(CO)L₂+ resulting from CO displacement of an X⁻ ligand.

The most convenient route for the preparation of alkoxalyl complexes of $Pd(II)$ and $Pt(II)$ involves oxidative-addition of alkyl oxalyl chlorides to zerovalent metal-phosphine complexes

$$
ML_4 + CL-C-C\begin{array}{ccc}\nO & O & Cl & L \\
C & + C & +2L & +2L \\
OR & L & C=O\n\end{array}
$$
\n
$$
O=C\begin{array}{ccc}\nO & O & \downarrow \\
O & +2L & \downarrow \\
O & \downarrow \\
OR & \downarrow\n\end{array}
$$
\n(6)

where $M = Pd$ or Pt, $R = CH_3$ or C₂H₅, and $L = a$ phosphine. These reactions proceed readily at room temperature or below to give the yellow products in high yield. The concomitant formation of a small amount of *trans*- $PtCl(H)L₂¹⁴$ in the reaction of CICOCO₂C₂H₅ with PtL₄ is suspected to arise from the reaction of PtL₄ with HCl present in $CICOCO₂C₂H₅$ as a hydrolysis product.

Previously this laboratory reported¹⁵ a preliminary X-ray structural investigation of trans-PdCl(COCO2CH3)[P- (C_6H_5) ₃ $]_2$ which showed the molecule to have the basic geometry given in eq 6 with the plane of the planar methoxalyl

Figure 1. Infrared spectra of PdCl(COCO₂CH₃)[P(C₆H₅)₃]₂ (A) and PtCl(COCO₂CH₃)[P(C₆H₅)₃]₂ (B) in Nujol mulls.

ligand nearly perpendicular to the square plane formed by the Pd, C1, and two P atoms. The observed 1:2:1 triplet for the phosphine CH3 groups in the proton nmr spectra (Table I) of the **MC1(COC02CH3)[P(CH3)(c6H5)2]2** complexes indicates¹⁶ a trans geometry for the complexes of both $Pd(II)$ and Pt(I1).

The chemical shift of the methyl protons in the methoxycarbonyl and methoxalyl ligands is at higher field (Table I) than in the starting chlorides, ClC02CH3 and ClCOC- $O₂CH₃$. This is most likely due in part to the lower electron-withdrawing ability of the metal as compared to C1, but it also appears that the phenyl groups in the phosphine ligand cause a significant upfield shift. This is particularly noticeable for the methoxycarbonyl complexes, PdCl(C02- CH3)L2, where L is P(C2H5)3 *(7* 6.51) or P(C6Hs)3 *(7* 7.60). A similar trend may be noted (Table I) in the methoxalyl complexes as well, but the effect is smaller because of the increased distance between the methyl group and the phosphines. A similar shielding effect by phosphine phenyl groups was previously17 observed in the related dialkylcarbamoyl complexes. The methoxycarbonyl complexes of Pt typically show splitting of the methyl protons by 195Pt (33% abundant) to give a 1:4:1 pattern with $J(PtCOCH)$ equal to 7 Hz. Due to the increased distance from the Pt atom, the methyl group in the methoxalyl complexes shows no measurable splitting by the 195Pt.

The infrared spectra (Table I) of all of the alkoxalyl complexes show two strong, well-separated $\nu(C=O)$ carbonyl bands. **(As** discussed below, each of these may occur as two absorptions due to the presence of conformational isomers.) The lower frequency absorption occurs in the 1640-1670-cm-1 region and may be assigned to the carbonyl group adjacent to the metal. This assignment is based on the low carbonyl frequencies observed for alkoxycarbonyl complexes of both Pd(II) and Pt(II), Table I. The higher frequency ν (C=O) band occurs in the region 1710-1725 cm⁻¹. This region is common for organic esters and supports assignment of the ester carbonyl ν (C=O) mode to this band.

The methoxalyl ligand in **PdCl(COCO2CH3)[P(CsHs)3]2** in the solid state15 has an s-trans geometry with the carbonyl oxygen atoms in the ligand trans to each other. **A** Nujol mull infrared spectrum of this complex shows only two carbonyl

Figure 2. Infrared spectra of PtCl(COCO₂CH₃)[P(C₆H₅)₃]₂ in $CH₂Cl₂$ solution (A) and in $C₆H₆$ solution (B).

bands (Figure 1) at 1675 and 1720 cm $^{-1}$. In CHCl₃, again only these two bands appear slightly shifted to 1674 and 1722 cm-1. Thus it appears that only one isomer, the s-trans, is present in solutions of this complex.

In the Nujol mull spectrum (Figure 1) of $PtCl(COCO₂$ - CH_3 [P(C₆H₅)₃]₂, two strong bands at 1670 and 1710 cm⁻¹ suggest the presence of the s-trans isomer by comparison with the spectrum of the analogous Pd(I1) complex. **A** shoulder on the lower frequency band suggests the possible presence of another isomer. In solution (Figure 2), the complex shows two pairs of carbonyl bands, the lower frequency pair being only partially resolved. This also indicates the presence of two isomers of the complex, presumably resulting from different conformations of the alkoxalyl ligand. The planarity of the methoxalyl ligand and short C-C bond distance (1.41 **A)15** in PdCl(COCO₂CH₃) $[P(C_6H_5)_3]_2$ suggest that some partial double bonding occurs in the C-C bond. This planar geometry could be maintained but rotation around the C-C bond could give either the s-trans or s-cis isomer. These conformers appear to be the most likely structures for the detected isomers.

The 1660- and 1715-cm-1 bands are assigned to the s-trans isomer, based on the similarity of their positions both with the spectrum of PdCl(COCO₂CH₃) $[P(C_6H_5)_3]_2$ and with the solid-state spectrum of **PtCl(COC02CH3)IP(CsHs)3]2.** The other two absorptions at 1735 and 1640 cm-1 may then be assigned to the s-cis conformation.

The approximate relative ratios of the s-cis to s-trans isomers in different solvents at room temperature are indicated by the ratio of the 1735- to 1715-cm-1 band intensities. These ratios, which are shown in Table II, increase in general as the dielectric constant of the solvent increases. This trend is consistent with polar solvents stabilizing the more polar s-cis isomer over the s-trans form. The same general trend was observed for $PtCl(COCO_2CH_3)[P(CH_3)(C_6H_5)_2]$ for which the band

Table 11. Effect of Solvent Polarity on the s-cis:s-trans Isomer Ratio of $PtCl(COCO₂CH₃)[P(C₆H₅)₃]₂$

Dielectric			Dielectric		
Solvent	constant Ratio ^a		Solvent	constant	Ratio ^a
C_6H_6	2.27	0.16	CH,Cl,	8.93	0.41
CS ₂	2.63	0.17	CH ₃ NO ₂	35.9	0.59
CHCl ₃	4.73	0.27	CH ₃ CN	38.8	0.48

a Ratio of absorbances of the 1735- to 1715-cm-' bands.

intensity ratios (in parentheses) increased with the solvent as follows: C_6H_6 (0.19) < CHCl₃ (0.34) < CH₂Cl₂ (0.45). The slightly higher ratios for the $P(CH_3)(C_6H_5)_2$ -containing complex in all solvents suggest that this less bulky ligand (as compared to $P(C_6H_5)$ ₃) favors the formation of more of the sterically crowded s-cis isomer.

The relative s-cis:s-trans ratio of isomers also increases as the temperature of the solution increases. The solvents, the temperatures of the solutions of $PtCl(COCO_2CH_3)[P(C_6-$ H₅)₃]₂, and the 1735 cm⁻¹:1715 cm⁻¹ intensity ratios (in parentheses) are as follows: C₆H₆, 25° (0.16), 40° (0.17), 60° 25° (0.41). These data suggest that the s-trans to s-cis isomerization is endothermic. (0.18) ; CHCl₃, 25° (0.23) , 40° (0.26) ; CH₂Cl₂, -75° (0.32) ,

In contrast to the alkoxalyl complexes, nonmetal oxalyl derivatives such as the oxalyl halides $(XOCCOX)^{18}$ and dimethyl oxalate $(CH_3O_2CCO_2CH_3)^{19}$ exist in nonplanar as well as planar forms. Their existence in nonplanar forms indicates that there is relatively free rotation around the C-C bond and little double bonding between the two carbon atoms. The low barrier to rotation is also consistent with the normal single-bond distances $({\sim}1.53 \text{ Å})^{18,19}$ observed in these compounds.

Reactions of Alkoxalyl Complexes. Unlike alkoxycarbonyl complexes which react with acids to form carbonyl complexes and alcohols,20 the alkoxalyl complexes MC1- $(COCO_2CH_3)[P(C_6H_5)_3]_2$, $M = Pt$ or Pd, are stable to treatment with aqueous HBF4 or C13CCO2H in CHC13.

Transesterification of the methoxalyl ligand occurs under mild conditions

$$
PtCl(COCO_2CH_3)[P(C_6H_5)_3]_2 + C_2H_5OH \xrightarrow{\text{THF}, 25^\circ} 2 \text{ hr}, C_2H_5O^2
$$

\n
$$
PtCl(COCO_2C_2H_5)[P(C_6H_5)_3]_2
$$
 (7)

Since the starting complex is not soluble in ethanol, ester exchange does not occur in that solvent either with or without added $C_2H_5O^-$.

When $Cl₂$ is bubbled into a CHCl₃ solution of *trans*- $PtCl(COCO_2CH_3)[P(C_6H_5)_3]_2$, cleavage of the Pt-C bond occurs with formation of ClCOC02CH3 as the only carbonyl-containing product

$$
\text{PrCl(COCO}_2 \text{CH}_3)[P(C_6 \text{H}_5)_3]_2 + \text{Cl}_2 \xrightarrow{\text{CHCl}_3} \text{PrCl}_2[P(C_6 \text{H}_5)_3]_2 + \text{ClCOCO}_2 \text{CH}_3 \tag{8}
$$

Bright yellow trans-PtCl₂[P(C₆H₅)₃]₂ precipitates from solution and was identified by its far-infrared spectrum.¹¹ When the reaction is carried out using equimolar Cl2 and Pt-Cl(COC02CH3) [P(C6H5)3]2, again ClCOC02CH3 forms, but the complex precipitates as the cis -PtCl₂[P(C₆H₅)₃]₂. It is not clear why different isomers of $PtCl₂[P(C₆H₅)₃]$ are produced depending upon the amount of Cl2 present.

When $Cl₂$ is bubbled into a solution of PtCl(CO₂C- H_3) $[P(C_6H_5)_3]_2$ in CHCl₃, the colorless solution turns yellow but no precipitate forms. The infrared spectrum of this solution shows in addition to the ν (C=O) band for ClCO₂CH₃ at 1776 cm-1 bands at 1680 and 1720 cm-1. This reaction is more complex than that of the methoxalyl compound, and the other products have not been identified.

The palladium(I1)-alkoxalyl complexes rapidly undergo

decarbonylation to give the corresponding alkoxycarbonyl complexes when dissolved in either CHCl₃, CH₂Cl₂, or benzene at room temperature

$$
\text{PdCl}(\text{COCO}_2\text{R})\text{L}_2 \xrightarrow{\text{25}^{\circ}} \text{PdCl}(\text{CO}_2\text{R})\text{L}_2 + \text{CO} \tag{9}
$$

Bubbles of CO are released from the solutions, and infrared and proton nmr spectra indicate the formation of the alk. oxycarbonyl complex as the only other product.

For PdCl(COCO₂CH₃) [P(C₆H₅)₃]₂ dissolved in CHCl₃ at 25', the decarbonylation was approximately half complete after 10 min and complete after 20 min. When the original solution was cooled to -20°, virtually no decarbonylation occurred even after 2 days. The decarbonylation could also be greatly re, tarded by adding $P(C_6H_5)$ 3 to the solutions. When 0.2 mol of $P(C_6H_5)_3$ /mol of $PdCl(COCO_2CH_3)[P(C_6H_5)_3]$ was added to the CHCl₃ solution, only a small amount of decarbonylation had occurred after 10 hr, but it was complete after 2 days. However, when 2.0 mol of $P(C_6H_5)$ ₃/mol of complex were used, no decarbonylation was observed even after 2 days.

One might consider the decarbonylation to proceed *via* $-CO₂R$ migration from the oxalyl ligand to the Pd, followed by loss of the resulting CO ligand. Added $P(C_6H_5)$ ₃ could retard the decarbonylation by coordinating to the Pd of the starting complex, thereby preventing the $-CO₂R$ migration. This $\overline{P(C_6H_5)}$ 3 coordination appears, however, not to occur since the solution infrared spectrum of PdCl(COC02C- H_3) [P(C₆H₅)₃]₂ was the same in the presence and absence of added $P(C_6H_5)$ 3. An alternative decarbonylation mechanism is one that proceeds by initial $P(C_6H_5)$ ³ dissociation from the complex, followed by $-CO_2R$ migration and CO evolution. In this case, added $P(C_6H_5)$ ₃ would suppress the initial phosphine dissociation and thereby retard the overall rate of decarbonylation. This appears to be the more likely mechanism.

In contrast to the palladium complexes, their platinum analogs were stable in solution at 25° . For PtCl(COCO₂- CH_3 [P(C₆H₅)₃]₂ in CHCl₃ at 25[°], no decarbonylation was observed after several weeks. **At** *50°,* no decarbonylation occurred after several hours. However, in refluxing benzene (80°) , decarbonylation was complete in 2 hr. When the solid was heated under vacuum to 175° , about 75% of the starting material decarbonylated to give PtCl(CO₂CH₃)[P(C₆H₅)₃]₂ after 30 hr. At temperatures above 200', the complexes melted to give clear yellow liquids with evolution of a gas (presumably CO).

Several attempts were made to prepare the alkoxalyl complexes *via* the insertion of CO into the M-C bond of alkoxycarbonyl complexes *(eq* 3). While there was no evidence for such a reaction with PdCl(COCO₂CH₃) [P(C₆H₅)₃]₂ under a variety of conditions, the analogous $P(C_2H_5)$ 3 complex did appear to undergo the reaction

$$
\text{PdCl}(CO_2CH_3)[P(C_2H_5)_3]_2 + CO \rightarrow
$$

\n
$$
\text{PdCl}(COCO_2CH_3)[P(C_2H_5)_3]_2 \tag{10}
$$

In one run, the occurrence of an absorption at 1720 cm^{-1} in the spectrum of the reaction mixture of $PdCl(CO_2C$ -H3)[P(C2Hs)3]2 with CO (17 atm) in pentane solvent at *25"* for 21 hr indicated the formation of the alkoxalyl complex. Decarbonylation (eq 9) of the methoxalyl product was prevented by adding $P(C_2H_5)$ ₃ to the completed reaction solution while it was still under CO pressure. Unfortunately formation of the alkoxalyl compIex under these conditions was not reproducible. It appears that trace quantities of an unknown catalyst in the starting alkoxycarbonyl complex may have promoted the reaction.

Registry No. PtCl(CQCOMe)(PPh3)2, 50589-30-5; PtC1- (COC02Et)(PPh3)2, 50589-31-4; PtCl(COC02Me)(PMePh2)2,

Platinum-Carbon Bonded Acetylacetone Complexes *Inorganic Chemistry, Vol. 14, No. 1, 1975* **63**

53042-43-6; PdCl(CO₂Me)(PPh₃)₂, 50763-37-6; PdCl- $(COCO₂Me)(PPh₃)₂$, 50589-28-1; PdCl(COCO₂Et)(PPh₃)₂, 50589-29-2; PdCl(COCOzMe)(PMePhz)z, 53042-37-8; PdCI- (COzMe) (PEt3)2, 5 3042-4 1-4; PdC1(COCOzMe) (PEt3)2, 53042-42-5; PtCI(COzMe)(PPh3)z, 20524-02-1; Pd(PPh3)4, 14221-01-3; Pt- (PPh₃)₄, 14221-02-4; trans-PdCl₂(PPh₃)₂, 28966-81-6; trans-PdCIz(PEt3)2, 15642-19-0; Pt(PMePhz)4,27 121-53-5; Pd(PMePhz)4, 2498 1-80-4; Pd(PEts)4, 52230-29-2; CICOzMe, 79-22-1; CICOCOzMe, 5781-53-3; ClCOCOzEt, 4755-77-5.

References and Notes

- (1) M. Graziani, P. Uguagliati, and *G.* Carturan, *J. Organometal. Chem.,* **27,** 275 (1971).
- (2) P. Fitton, M. P. Johnson, and J. E. McKeon, *Chem. Commun.,* 6 (1968).
- (3) W. Beck and K. V. Werner, *Chem. Ber.,* 104,2901 (1971); K. V. Werner and W. Beck, *ibid.,* 105, 3947 (1972).
- (4) M. Hidai, M. Kokura, and *Y.* Uchida, *J. Organometal. Chem.,* 52, 431 (1973).
- (5) D. M. Fenton and P. J. Steinwand, *J. Org. Chem.,* 39, 701 (1974).
- (6) L. Malatesta and C. Cariello, *J. Chem. Soc.,* 2323 (1958).
- (7) A. J, Mukhedkar, M. Green, and F. *G.* A. Stone, *J. Chem. SOC. A,,* 3023 (1969).
- (8) B. L. Shaw, *Proc. Chem.* SOC., *London,* 247 (1960).
- (9) H. C. Clark, K. **R.** Dixon, and W. J. Jacobs, *J. Amer. Chem.* Soc., 91, 1346 (1969).
- (10) C. D. Cook and G. S. Jauhal, *Can. J. Chem.,* 45, 301 (1967).
- (11) P. Haake and *S.* H. Mastin, *J. Amer. Chem. SOC.,* 93, 6823 (1971).
- (12) W. Beck, M. Bauder, *G.* La Monnica, S. Cenini, and **R.** Ugo, *J. Chem.* Soc. A, 113 (1971).
- (13) D. M. Barlex and R. **D.** W. Kernrnitt, *J. Chem. SOC., Dalton Trans.,* 1436 (1972).
-
- (14) J. Chatt and B. L. Shaw, *J. Chem. Soc.*, 5075 (1962).
(15) J. Fayos, E. Dobrzynski, R. J. Angelici, and J. Clardy, *J. Organometal*. *Chem.,* 59, C33 (1973).
- (16) J. M. Jenkins and B. L. Shaw, *J. Chem. SOC. A,* 770 (1966).
- (17) C. R. Green and R. J. Angelici, *Inorg. Chem.,* **11,** 2095 (1972).
-
- (18) K. Hagen and K. Hedberg, *J. Amer. Chem. Soc.*, 95, 4796 (1973).
(19) J. K. Wilmshurst and J. F. Horwood, *J. Mol. Spectrosc.*, 21, 48 (1966);
H. J. Maria and S. P. McGlynn, *ibid.*, 42, 177 (1972).
- (20) R. J. Angelici, *Accounts Chem. Res.,* 5, 335 (1972).

Contribution from the Todd Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53233

Infrared Spectra and Bonding of Metal Complexes of Platinum-Carbon Bonded Acetylacetone Complexes

YUKIO NAKAMURA and KAZUO NAKAMOTO*

Received March 7, 1974 AIC40159Z

Infrared spectra of K[PtCl(acac)₂] and its metal complexes M[PtCl(acac)₂]_n (M = (VO)^{II}, Co(II), Ni(II), Cu(II), Zn(II), Pd(II) for $n = 2$; M = Fe(III) for $n = 3$) and NiBrz(acacH)z have been measured and assigned. The metal isotope technique has been utilized to assign the M-O(keto-acac) stretching bands. Comparisons of infrared spectra between Ni[PtCl(acac)₂]₂, $[PtCl(acac)₂]$; and NiBr₂(acacH)₂ reveal that the C=O groups of Ni $[PtCl(acac)₂]$ ₂ retain the keto character even after coordination to the Ni atom and that its Ni-O(keto-acac) bonds are much weaker than those of enol-acac complexes. Similar results have been obtained for other metal complexes.

Introduction

The versatility of acetylacetone (acacH) as a coordinating ligand is well recognized.¹⁻³ An extensive infrared study has been made on the 0-bonded enol-acac complexes (structure I) which are most common among many acetylacetonato

complexes.4 The C-bonded acetylacetonato complex, K- [PtCl(acac)₂], was first prepared by Werner.⁵ However, its structure and bonding were not known until X-ray analysis6 revealed the structure **I1** which contains one 0-bonded enol-

and one C-bonded keto-acac group. We have previously

studied the infrared spectra of this and other C-bonded acac complexes.^{7,8}

Lewis and Oldham9 have shown that the above complex anion (structure 11) can form neutral complexes of the type (structure 111) with a number of divalent metals including the

 VO^{2+} and UO_2^{2+} ions. They studied the infrared spectra, electronic spectra, and magnetic susceptibility of these complexes and concluded that the majority of them take a six-coordinate octahedral structure in which two chlorine atoms occupy the fifth and sixth positions of the coordination sphere of the metal (M) and that one of the estac groups in [PtCl- $(\text{acac})_2$ - coordinates to the metal in the keto form.

In order to obtain more information about the nature of bonding between the metal and the C-bonded acac anion (structure 11), we have carried out detailed vibrational analyses on a series of metal complexes of structure 111. This paper reports the infrared spectra of M[PtCl(acac)₂]₂ where M is Co(II), Ni(II), Cu(II), Zn(II), Pd(II), and (VO)^{II}, and Fe[PtCl(acac)₂]₃. We have shown previously¹⁰ that the